\qquad

Chapter 7 Due Monday 6/4/18

Determine whether each function represents exponential growth or decay.

1. $y=5(.6)^{x}$
2. $y=.1(2)^{x}$
3. $y=5 \cdot 4^{-x}$

Describe the shifts of the following exponential equations from its parent function and then graph. Then, identify the functions domain and range.
4. $y=-2\left(\frac{1}{2}\right)^{x-3}$
5. $y=.25(4)^{x+1}-2$

6. $y=\log _{2}(x+3)$

7. $y=\log _{3}(x-1)+2$

Write each expression in logarithmic form.
8. $2^{7}=128$
9. $8^{-2}=\frac{1}{64}$
10. $e^{15}=x$
11. $e^{-5 x}=0.2$

Write each equation in exponential form.
12. $\log _{15} 225=2$
13. $\log _{4} 32=\frac{5}{2}$
14. $\ln 20=x$
15. $\ln 0.0002=x$

Evaluate each expression.

16. $\log _{5} 25$
17. $\log _{4} \frac{1}{64}$
18. $7^{\log _{7} x}$
19. $e^{\ln 3}$
20. $\ln e^{y}$

Solve each equation. Check your solutions.
21. $\log _{3} x=5$
22. $\ln x=2$
23. $\log _{6} 216=x$

24-27, use $\log _{5} 3 \approx 0.6826$ and $\log _{5} 4 \approx 0.8614$ to evaluate each expression.
24. $\log _{5} 12$
25. $\log _{5} \frac{81}{5}$
26. $\log _{5} \frac{9}{16}$
27. $\log _{5} 144$

Use the Change of Base formula to evaluate.
28. $\log _{5} 7$
29. $\log _{9} 4$

Expand the following logarithms.
30. $\log _{3} 4 x^{2}$
31. $\ln \frac{3 x^{3}}{2 y}$

Condense the following logarithms.
32. $\log _{5} 24-\log _{5} 6$
33. $\log _{8} 6+2 \log _{8} 3$

Solve each equation or inequality. Check your solution.
34. $3^{3 x-5}=81$
35. $2^{3 n-1}=\left(\frac{1}{8}\right)^{n}$
36. $9^{2 x-1}=27^{x+4}$
37. $5^{x}+3=12$
39. $e^{x}=5$
41. $\log _{6}(4 x+12)=2$
\qquad
43. $\log _{4} 5+\log _{4} x=\log _{4} 60$
45. $3 \log _{8} 2-\log _{8} 4=\log _{8} b$
47. $\log _{2}(x-2)+\log _{2}(x+1)=2$
49. $\ln (x+3)=1$
46. $\log _{3} x-\log _{3}(x+2)=1$
38. $7^{2 x-1}+5=27$
40. $2 e^{x}-1=11$
42. $\log _{3}(x+2)=\log _{3}(3 x)$
44. $\log _{5} y-\log _{5} 8=\log _{5} 1$
48. $\ln 8 x=3$

Find the inverse.
50. $y=4^{x}$
51. $y=\ln (x+3)$
52. $y=\log _{8} x$
53. A computer system depreciates at a rate of 6.5% per year. If the computer system originally cost $\$ 4000$, how long would it take for it to be worth half its value?
54. Suppose you deposit $\$ 1000$ in an account paying 5% annual interest compounded continuously. a. What is the balance after 10 years?
b. How long will it take for the balance in your account to reach $\$ 1500$?
55. Suppose you deposit $\$ 100$ in an account paying 3.5% interest compounded continuously. How long will it take for your money to double?
56. A cup of coffee contains 130 milligrams of caffeine. If caffeine is eliminated from the body at a rate of 11% per hour, how long will it take for half of this caffeine to be eliminated from a person's body?
57. You're off to college! You buy a computer for $\$ 2500$. It is expected to depreciate at a rate of 20% per year. What will be the value of the computer in 2 years?
58. A computer system depreciates at an average rate of 4% per month. If the value of the computer system was originally $\$ 12000$, in how many months is it worth $\$ 7350$?
59. A piece of machinery valued at $\$ 250,000$ depreciates at a fixed rate of 12% per year. After how many years will the value have depreciated to $\$ 100,000$?
60. The Miller's bought a condominium for $\$ 185,000$. Assuming that the value of the condo will appreciate at approximately 5% a year, how much will the condo be worth in 7 years?
61. The population of a city of one million people is increasing at a rate of 3% per year. If the population continues to grow at this rate, in how many years will the population have doubled?

Note: always round sides to the nearest tenth and angles to the nearest degree.
Find the values of the six trigonometric functions for angle θ.

1. $\sin \theta$ \qquad $\cos \theta$
$\tan \theta$
$\csc \theta$
\square
$\sec \theta$ \qquad
$\cot \theta$ \qquad
2.

2. $\sin \theta$ \qquad $\cos \theta$
$\tan \theta$ \qquad $\csc \theta$ \qquad
$\sec \theta$ \qquad
$\cot \theta$ \qquad
Write an equation involving sin, cos, or tan that can be used to find x, then solve.
3.

7
4.

3. \qquad
4. \qquad
5.

5. \qquad

Solve the right triangle, $\triangle A B C$ by using the given measurements.
6. $A=35^{\circ}, a=12$
7. $b=52, c=95$
6. $B=$
$b=$
$\mathrm{C}=$
7. $a=$
$A=$
$B=$

Draw an angle with the given measure in standard position.
8. 210°

9. $-\frac{28 \pi}{9}$

Rewrite each degree measure in radians and each radian measure in degrees.

$$
\text { 10. }-18^{\circ}
$$

11. 870°
12. \qquad
13. \qquad
14. $\frac{5 \pi}{2}$
15. $-\frac{7 \pi}{12}$
16. \qquad
17. \qquad

Find one angle with positive measure and one angle with negative measure coterminal with each angle.
14. $80^{\circ} \quad$ 15. $\frac{2 \pi}{5}$
14. \qquad
15. \qquad
16. -93°
17. $-\frac{5 \pi}{12}$
16. \qquad
17. \qquad

Find the reference angle for the angle with the given measure.
18. -210°
19. $\frac{13 \pi}{3}$
18. \qquad
19.

Find the exact value of each trigonometric function.
20. $\tan 135^{\circ}$
21. $\cot \left(-90^{\circ}\right)$
22. $\tan \frac{5 \pi}{3}$
23. $\csc \left(-\frac{3 \pi}{4}\right)$
20. \qquad
21. \qquad
22. \qquad
23.
24. Solve $\triangle A B C$ if $A=50^{\circ}, B=30^{\circ}$, and $c=9$.
24. $C=$ \qquad
$\mathrm{a}=$ \qquad
$b=$ \qquad

Determine whether each triangle has one, two or no solutions, then solve each triangle.
25. $A=29^{\circ}, a=6, b=13$
25. \qquad
26. $A=66^{\circ}, a=12$, and $b=7$
26. \qquad

Solve the following triangles.
28.

28. \qquad
29. $a=16, b=20, C=54^{\circ}$
29. \qquad
\qquad

Solve the following triangles completely.
30. $a=8, b=6, c=9$
30. \qquad

Solve each equation by finding the value of \boldsymbol{x}.
36. $\operatorname{Sin}^{-1}(-1)=x$
37. $x=\operatorname{Arctan} 0$
36.
37. \qquad
38. $x=\operatorname{Arccos} \frac{1}{2}$
39. $\operatorname{Arctan}\left(-\frac{\sqrt{3}}{3}\right)$
38. \qquad
39. \qquad

Find each value. Write angle measures in radians.
40. $\operatorname{Sin}^{-1} \frac{\sqrt{2}}{2}$
41. $\operatorname{Tan}^{-1}(-\sqrt{3})$
40. \qquad
41. \qquad

Find the value of each expression.
42. $\cos \theta$, if $\tan \theta=-\frac{4}{3} ; 90^{\circ}<\theta<180^{\circ}$
42. \qquad
43. $\sin \theta$, if $\cos \theta=\frac{6}{7} ; 270^{\circ}<\theta<360^{\circ}$
43. \qquad
44. In a sightseeing boat near the base of the Horseshoe Falls at Niagara Falls, a passenger estimates the angle of elevation to the top of the Falls to be 35°. If the Horseshoe Falls are 173 feet high, what is the distance from the boat to the base of the falls?

44.

CHAPTER 14 - GRAPHING SINE AND COSINE Due Friday 6/8/18

1. Given, $y=4 \sin \frac{1}{2} \theta$ find the following in radians:
a. Amplitude
1 a. \qquad
b. Period
b. \qquad
c. Graph one positive and one negative period. (be sure to label graph)

2. Given, $y=\frac{1}{2} \cos 4 \theta$ find the following in radians:
a. Amplitude

2 a. \qquad
b. Period
b. \qquad
c. Graph one positive and one negative period. (be sure to label graph)

3. Given, $y=3 \cos \left(\theta-\frac{\pi}{2}\right)$ find the following:
a. Amplitude
b. Period

3 a. \qquad
b. \qquad
c. Phase Shift
c. \qquad
d. Graph one positive and one negative period. (be sure to label graph)

4. Given, $y=-2 \sin \theta-1$ find the following in radians:
a. Amplitude
b. Period
c. Vertical Shift

4 a. \qquad
b.
c. \qquad
\qquad
d. Graph one positive and one negative period. (be sure to label graph)

CHAPTER 8 - RATIONAL EXPRESSIONS Due Wednesday 6/6/18 Simplify each expression.

1. $\frac{21 x^{3} y}{14 x^{2} y^{2}}$
2. $\frac{x^{2}+x-6}{x^{2}-6 x-27}$
3. \qquad
4. \qquad
5. $\frac{(m-3)^{2}}{m^{2}-6 m+9} \bullet \frac{m^{3}-9 m}{m^{2}-9}$
6. $\frac{c^{2}-3 c}{c^{2}-25} \bullet \frac{c^{2}+4 c-5}{c^{2}-4 c+3}$
7. \qquad
8.
9. $\frac{6 x y^{4}}{25 z^{3}} \div \frac{18 x z^{2}}{5 y}$
10. $\frac{16 p^{2}-8 p+1}{14 p^{4}} \div \frac{4 p^{2}+7 p-2}{7 p^{5}}$
11. \qquad
12. \qquad
13. $\frac{3}{8 p^{2} q}+\frac{5}{4 p^{2} q}$
14. $\frac{4 z}{z-4}+\frac{z+4}{z+1}$
15. \qquad
16. \qquad
17. $\frac{3}{w-3}-\frac{18}{w^{2}-9}$
18. $\frac{5}{3 b+d}-\frac{2}{3 b d}$
19. \qquad
20. \qquad

Determine any value(s) of \boldsymbol{x} that are undefined.
11. $f(x)=\frac{3 x-1}{3 x^{2}+5 x-2}$
12. $f(x)=\frac{x^{2}-x-12}{x^{2}-4 x}$
11.
12.

Solve the following.

13. $\frac{3}{x+1}=\frac{9}{4 x+5}$
14. $\frac{3}{2}+\frac{4}{x-1}=\frac{x+1}{x-1}$
15. \qquad
16. \qquad
17. $1-\frac{8}{x-5}=\frac{3}{x}$
18. $\frac{6}{x-3}=\frac{8 x^{2}}{x^{2}-9}-\frac{4 x}{x+3}$
19. \qquad
20. \qquad
21. $\frac{x+1}{x+6}+\frac{1}{x}=\frac{2 x+1}{x+6} \quad$ 18. $\frac{2}{x-3}+\frac{1}{x}=\frac{x-1}{x-3}$
22. \qquad
23. \qquad
24. Find the product: $\frac{x^{2}-11 x+24}{x^{2}-18 x+80} \cdot \frac{x^{2}-15 x+50}{x^{2}-9 x+20}$
25. \qquad
26. Solve: $\frac{2}{x-1}=4-\frac{x}{x-1}$
27. \qquad
28. Solve: $\frac{9}{x-3}=\frac{x-4}{x-3}+\frac{1}{4}$
29. \qquad

Graph the following - be sure to include the vertical and horizontal asymptotes.
22. $y=\frac{2}{x-1}-3$

Vertical Asymptote:
Horizontal Asymptote: \qquad
Domain: \qquad
Range: \qquad
x-int : \qquad
y-int : \qquad

23. $y=\frac{6 x-1}{3 x+6}$

Vertical Asymptote: \qquad
Horizontal Asymptote: \qquad
Domain: \qquad
Range: \qquad
x-int : \qquad
y-int : \qquad
24. $y=\frac{x}{x^{2}-4}$

Vertical Asymptote: \qquad
Horizontal Asymptote: \qquad
Domain: \qquad
Range: \qquad
x-int : \qquad
y-int :

\boldsymbol{x}	\boldsymbol{y}

25. $y=\frac{x^{2}-2 x+1}{x+2}$

Vertical Asymptote: \qquad
Horizontal Asymptote: \qquad
Domain: \qquad

CHAPTER 10 - COUNTING METHODS AND PROBABILITY Due Thursday 6/7/18

1. A briefcase lock has 3 rotating cylinders each containing 10 digits.
2. \qquad How many numerical codes are possible?
3. Allan is playing the role of Oliver in his school's production of Oliver Twist. The wardrobe crew has presented Allan with 5 pairs of pants and 4 shirts that he can wear. How many possible costumes consisting of a pair of pants and a shirt does Allan have to choose from?
4. A Mexican restaurant offers chicken, beef, or vegetarian fajitas wrapped with either corn or flour tortillas, and topped with either mild, medium or hot salsa. How many different choices of fajitas does a customer have?
5. How many 7-digit phone numbers can be formed if the first digit cannot
6. \qquad
7. \qquad be 0 or 1 , and no digit can be repeated?
8. \qquad

Determine whether each situation involves a permutation of combination. Then find the number of possibilities.

5. Seating 8 students in 8 seats in the front row of the school auditorium.
6. Checking out 3 library books from a list of 8 books for a research paper.
7. \qquad
8. \qquad
9. Electing 4 candidates to a municipal planning board from a field of 7 candidates.
10. The first, second and third place finishers in a race with 10 contestants.
11. \qquad
12. \qquad

Evaluate.

9. ${ }_{5} P_{3}$
10. ${ }_{6} C_{2}$
11. 6 !
12. $\frac{10!}{5!5!}$
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. Find the number of distinguishable permutations in the following word:
a. PANAMA
b. FACTORIAL
c. MISSISSIPPI

13 a. \qquad
b. \qquad
c. \qquad
14. Find the number of possible 5-card hands that contain the cards specified.

The cards are taken from a standard 52-card deck.
a. 4 kings and one other card

14 a. \qquad
b. 5 hearts or 5 diamonds
b. \qquad
15. Six representatives from a senior class of 350 students are to be chosen for the student council. In how many ways can these students be chosen to represent the senior class on the student council?
15. \qquad
16. You have an equally likely chance of choosing any integer from 1 through 30. Find the probability of the given event.
a. An even number is chosen
b. A multiple of 5 is chosen
16 a. \qquad
b. \qquad
c. A factor of 60 is chosen
d. A prime number is chosen
c. \qquad
d. \qquad
17. Let A and B be events such that $P(A)=\frac{2}{3}, P(B)=\frac{1}{2}$ and $P(A$ and $B)=\frac{1}{3}$. Find $P(A$ or $B)$.
17. \qquad
18. Let A and B be events such that $P(A)=0.32, P(B)=0.48$, and $P(A$ and $B)=0.12$. Find the indicated probability.
$P(A$ or $B)$
18. \qquad
19. A card is randomly selected from a standard deck of 52 cards. Find the probability of drawing the given card.
a. A red king
b. A diamond or a 3
c. Not a club

19 a. \qquad
b. \qquad
C. \qquad
20. Two six-sided dice are rolled. Find the probability of the given event.
a. The sum is not 7
b. The sum is less than 8 or greater than 11

20 a. \qquad
b. \qquad
21. $\frac{3}{7}$
22. $\frac{4}{5}$
23. $\frac{1}{15}$
21. \qquad
22. \qquad
23. \qquad
Find the probability of an event occurring, given the odds of the event.
24. 10:1
25. 4:9
26. 8:3
24. \qquad
25. \qquad
26. \qquad
27. A die is rolled twice. Find the probability.
a. $\quad P(5$, then 6$)$

27 a. \qquad
b. $\quad P(4$, then not 6$)$
b. \qquad
28. There are 3 nickels, 3 dimes and 5 quarters in a purse. Three coins are selected in succession at random. Find the probability.
a. $\quad P$ (nickel, then dime, then quarter) if no replacement occurs.

28 a. \qquad
b. $\quad P(3$ dimes $)$ if replacement occurs.
b. \qquad
c. $\quad P$ (nickel, then 2 quarters) if replacement occurs.
C. \qquad
d. $\quad P(3$ quarters $)$ if no replacement occurs.
d. \qquad
29. Serena is creating a painting. She wants to use 2 more colors. She chooses randomly from 6 shades of red, 10 shades of green, 4 shades of yellow, 4 shades of purple and 6 shades of blue. What is the probability that she chooses 2 shades of green?
29. \qquad
30. Becky's mother is shopping at the bakery. The owner offers Becky a cookie from a jar containing 22 chocolate chip cookies, 18 sugar cookies and 15 oatmeal cookies. Without looking, Becky selects one, drops it back in, and then randomly selects another. What is the probability that neither selection was a chocolate chip cookie?
30. \qquad
31. A die is rolled. Find each probability.
a. $P(5$ or 6$)$
b. $\quad P$ (at least a 3)

31 a.
b.

