te: always round sides to the nearest tenth and angles to the nearest degree. 1-2 Find the values of the six trigonometric functions for angle θ.

$$
\begin{aligned}
& \sin \theta=\frac{3}{3 \sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \cos \theta=\frac{3 \sqrt{2}}{3 \sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{8}}{\sqrt{3}}=\frac{\sqrt{6}}{3} \\
& \tan \theta=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& 3 \sqrt{2} \\
& \begin{aligned}
3^{2}+b^{2} & =(3 \sqrt{3})^{2} \\
b^{2} & =18
\end{aligned} \\
& b=3 \sqrt{2}
\end{aligned}
$$

1)

2)

O

3-4, Write an equation involving \sin , \cos, or tan that can be used to find x, then solve.
4)
3)

$$
\sin 30=\frac{x}{7}
$$

$$
x=7 \tan 30
$$

$$
\frac{200 \sqrt{3}}{1}
$$

$$
=7\left(\frac{\sqrt{3}}{3}\right)=\frac{7 \sqrt{3}}{3}
$$

4) \qquad
5) $\frac{\frac{7 \sqrt{3}}{3}}{3}$

$$
\tan 49=\frac{17}{x} \quad x=\frac{17}{\tan 49}
$$

Write an equation involving \sin , \cos, or \tan that can be used to find x, then solve.
5)

$$
\tan x=\frac{19.2}{17}
$$

5) \qquad

$$
x=48^{\circ}
$$

1) $\sin \theta$

$$
\begin{aligned}
& 45 / 51=\frac{15}{17} \\
& \begin{array}{l}
\cos \theta \frac{24 / 51}{}=8 / 17 \\
\tan \theta-\frac{45 / 24}{}=15 / 8 \\
\csc \theta-\frac{1}{45}=7 / 15
\end{array} \\
& \begin{array}{l}
\sec \theta \frac{51 / 24}{24 / 45}=8 / 17 \\
\cot \theta \\
\frac{517 / 8}{2}
\end{array}
\end{aligned}
$$

2) $\begin{aligned} & \sin \theta \frac{\sqrt{3} / 3}{\sqrt{6} / 3} \\ & \cos \theta \frac{\sqrt{\sqrt{2}} / 2}{\sqrt{2} / 2} \\ & \tan \theta \frac{\frac{3}{\sqrt{8}}}{8}=\sqrt{3} \\ & \csc \theta \frac{\sqrt{3}}{3}=\frac{3}{6} \\ & \sec \theta \frac{\frac{3 \sqrt{6}}{\sqrt{6}}}{\frac{2}{2}}=\frac{2 \sqrt{2}}{2}=\sqrt{2}\end{aligned}$

6-7, Solve $\triangle A B C$ by using the given measurements.
6) $A=35^{\circ}, a=12$
$\tan 35=\frac{12}{6}$ $\sin 35=\frac{12}{c}$
7) $b=52, c=95$ $a=79.5$
$\sin A=\frac{79.5}{95}$

$$
b=17.1 \quad c=20.9
$$

$a=79.5$
$A=57^{\circ}$.

$$
A=57^{\circ}
$$

B 7) $A=57^{\circ}$
$A=33^{\circ}$

6) $B=55$
$b=17.1$
$c=20.9$

8-9, Draw an angle with the given measure in standard position.
8) 210°

9) -560°

10-13, Rewrite each degree measure in radians and each radian measure in degrees.
10) $-18^{\circ}, \frac{\pi}{180}=\frac{-\pi}{10}$
11) $870^{\circ} \cdot \frac{\pi}{180}=\frac{29 \pi}{6}$
12) $\frac{5 \pi}{2}=\frac{180}{\pi}=450$
13) $-\frac{7 \pi}{12} \quad$ o. $\frac{180}{\pi}$
10)
$-\pi$
11) $\frac{29 \pi}{6}$

10-13, Rewrite each degree measure in radians and each radian measure in degrees.
12) \qquad
13) -105°

14-17, Find one angle with positive measure and one angle with negative measure coterminal with each angle.
14) 80°
14) $440,-280$
15) $\frac{2 \pi}{5}$
15) $\frac{12 \pi}{5},-\frac{8 \pi}{5}$
16) -93°
16) $267^{\circ},-453^{\circ}$
17) $-\frac{5 \pi}{12}$
17) $\frac{19 \pi}{12}, \frac{-29 \pi}{12}$

18-19, Find the reference angle for the angle with the given measure.
18) -210° II
19) $\frac{13 \pi}{3}$

18) 30°
19) \qquad
\cdot. Find the exact value of each trigonometric function.
20) $\tan 135^{\circ}$

22) $\tan \frac{5 \pi}{3}$

$$
\tan =\frac{\sin }{\cos }
$$

20) \qquad
21) \qquad
22) $-\sqrt{3}$
23) $-\sqrt{2}$
\qquad
24) Solve $\triangle A B C$ if $A=50^{\circ}, B=30^{\circ}$ and $c=9$.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \frac{a}{\sin 50}=\frac{9}{a \sin 100=9 \sin 50}
\end{aligned}
$$

$a=7$

$$
\text { 24) } \begin{aligned}
\mathrm{c} & =\frac{100^{\circ}}{7} \\
a & =\frac{7}{4,6} \\
b & =\frac{9}{b} \\
\frac{b}{\sin 30} & =\frac{9}{\sin 100} \\
b & =4.6
\end{aligned}
$$

25-27, Determine whether each triangle has one, two or no solutions, then solve each triangle.
25) $A=29^{\circ}, a=6$ and $b=13$
25) \qquad No sol

$$
\begin{aligned}
& \frac{6}{\sin 2 q}=\frac{13}{\sin B} \quad \sin B=1.05 \\
& B=\sin ^{-1}(1.05)
\end{aligned}
$$

26) $A=66^{\circ}, a=12$ and $b=7$

$$
\begin{array}{ll}
\frac{12}{\sin 66}=\frac{7}{\sin B} & \sin B=\frac{7 \sin 64}{12} \\
B=32^{\circ} & \beta=\sin ^{-1}(.53)
\end{array}
$$

$$
\begin{aligned}
\frac{7}{\sin 32} & =\frac{c}{\sin 82} \\
c & =13
\end{aligned}
$$

26)

$$
\frac{B=32^{\circ}}{C=82^{\circ} \quad C=13} \begin{gathered}
B=606 \\
C=-248
\end{gathered}
$$

27) $A=45^{\circ}, a=15$ and $b=18$

$$
\frac{15}{\sin 45}=\frac{C 8}{\sin B} ; B=58^{\circ}
$$

27) \qquad

$$
\begin{array}{ll}
\frac{\text { Case } 1}{A=45} & a=15 \\
B=58 & b=18 \\
C=77 & C=207
\end{array}
$$

$$
\frac{\operatorname{case} 2}{A=45}_{A=15}
$$

$$
B=122 \quad b=18
$$

$$
c=13 \quad c=4.8
$$

$$
\frac{18}{\sin 45}=\frac{c}{\sin 77} c=20.7
$$

$$
\frac{18}{\sin 45}=\frac{c}{\sin 13}
$$

28-29, Solve the following triangles.
28)

$$
\begin{gathered}
c^{2}=12^{2}+7^{2}-2(12)(7) \cos 80 \\
c^{2}=163.8 \\
c=12.8
\end{gathered}
$$

$$
\frac{12.8}{\sin 80}=\frac{7}{\sin A}
$$

28)

$$
\sin A=-54
$$

29) $a=16, b=20, C=54^{\circ}$.

$$
\begin{aligned}
& C=12.8 \\
& A=33^{\circ}, \quad B=67^{\circ}
\end{aligned}
$$

$$
A=32^{\circ}
$$

$$
\begin{gathered}
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
c^{2}=16^{2}+20^{2}-2(10)(20) \cos 54 \\
c^{2}=420.8 \\
c=20.5
\end{gathered}
$$

29) \qquad

$$
\begin{aligned}
& C=20.5 \\
& A=39^{\circ}, B=87^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\frac{20.5}{\sin 54} & =\frac{16}{\sin A} \\
\sin A & =.63 \\
A & =39^{\circ}
\end{aligned}
$$

30-31, Solve the following triangles.
30) $a=8, b=6, c=9$

$$
\begin{gathered}
9^{2}=8^{2}+6^{2}-2(8)(6) \\
81=100-96 \cos C \\
.197=\cos C
\end{gathered}
$$

30)

$$
\sin A=, 87
$$

$$
c=75^{\circ}
$$

$$
A=61^{\circ}
$$

31) $B=47^{\circ}, C=112^{\circ}, b=13$

$$
\begin{aligned}
\frac{13}{\sin 47} & =\frac{c}{\sin 114} \\
c & =16.5
\end{aligned}
$$

$$
\begin{aligned}
\frac{a}{\sin 21} & =\frac{13}{\sin 47} \\
a & =6.4
\end{aligned}
$$

$$
\begin{gathered}
C=79^{\circ}, A=61^{\circ} \\
B=40^{\circ}
\end{gathered}
$$

31)

\qquad
34) $\sin \left(-\frac{2 \pi}{3}\right)$

35) $\cos 840^{\circ}$
$\ldots-1 / 2$
32) $\frac{\frac{\sqrt{2}}{2}}{2}$
33) $\frac{\frac{1}{2}}{\text { 34) } \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \text { 35) }}$
$\frac{-\sqrt{3}}{2}$
33) $\sin \left(-330^{\circ}\right)$ $=\frac{1}{2}$

\qquad
\because. 36-39, Solve each equation by finding the value of x.

$$
(0,1)
$$

36) $\operatorname{Sin}^{-1}(-1)=x$

$$
-90^{\circ}
$$

38) $x=\operatorname{Arccos} \frac{1}{2}$ 60°

37) $x=\operatorname{Arctan} 0$

39) $\operatorname{Arctan}\left(-\frac{\sqrt{3}}{3}\right)$

36) $-90,-\pi / 2$
37)

38) $60, \pi / 3$
39) $-30^{\circ},-\pi / 6$

Find each value. Write angle measures in radians.
40) $\operatorname{Sin}^{-1} \frac{\sqrt{2}}{2}$

41) $\operatorname{Tan}^{-1}(-\sqrt{3})$
40) $45^{\circ}, \pi / 4$
41) $-60^{\circ},-\pi / 3$

Find the value of each expression.
42) $\cos \theta$, if. $\tan \theta=-\frac{4}{3} ; 90^{\circ}<\theta<180^{\circ}$

42)
$-3 / 5$

$$
\cos \theta=\frac{-3}{5}
$$

43) $\sin \theta$, if $\cos \theta=\frac{6}{7} ; 270^{\circ}<\theta<360^{\circ}$
$\sin \theta$

44) $-\frac{\sqrt{13}}{7}$
45) In a sightseeing boat near the base of the Horseshoe falls at Niagara Falls, a passenger estimates the angle of elevation to the top of the Falls to be 35°. If the Horseshoe Falls are 173 feet high, what is the distance from the boat to the base of the falls?

$$
\begin{aligned}
\tan 35 & =\frac{173}{x} \\
x & =\frac{173}{\tan 35} \quad x=247 \mathrm{ft}
\end{aligned}
$$

45) Given, $y=4 \sin \frac{1}{2} \theta$ find the following in radians:
a) Amplitude 4

45 a) \qquad
b) Period $\frac{2 \pi}{1 / 2}=4 \pi$
b) \qquad
c) Graph one positive and one negative period. (be sure to label graph)

46) Given, $y=\frac{1}{2} \cos 4 \theta$ find the following in radians:
a) Amplitude $1 / 2$
b) Period $\frac{2 \pi}{4}=\frac{\pi}{2}$
c) Graph one positive and one negative period. (be sure to label graph)

46 a) \qquad
b) \qquad

447) Given, $y=3 \cos \left(\theta-\frac{\pi}{2}\right)$ find the following:
(a) Amplitude 3

47 a) \qquad
b) Period 2π
b) \qquad
c) Phase Shift right $\pi / 2$
c) \qquad
d) Graph one positive and one negative period. (be sure to label graph)

Given, $y=2 \sin \theta-1$ find the following in radians:
a) Amplitude 2
b) Period 2π
c) Vertical Shift down 1
d) Graph one positive and one negative period. (be sure to label graph)

Simplify each expression.
49) $\frac{21 x^{3} y}{14 x^{2} y^{2}}=\frac{3 x}{2 y}$
50) $\frac{x^{2}+x-6}{x^{2}-6 x-27}=\frac{(x+3)(x-2)}{(x-9)(x+3)}$
$3 x$
49) \qquad
$2 y$
50) $\frac{x-2}{x-9}$
51) $\frac{(m-3)^{2}}{m^{2}-6 m+9} \cdot \frac{m^{3}-9 m}{m^{2}-9}$
52) $\frac{c^{2}-3 c}{c^{2}-25} \cdot \frac{c^{2}+4 c-5}{c^{2}-4 c+3}$

$$
=\frac{(x-3)(x-3) \cdot m\left(m^{2}-9\right)}{(x-3)(x-3)\left(m^{2}-9\right)}
$$

$$
=M
$$

53) $\frac{6 x y^{4}}{25 z^{3}} \div \frac{18 x z^{2}}{5 y}=\frac{66 x y^{4}}{525 z^{3}} \cdot \frac{\$ y}{38 x z^{2}}$

$$
=\frac{y^{5}}{15 z^{5}}
$$

54) $\frac{16 p^{2}-8 p+1}{14 p^{4}} \div \frac{4 p^{2}+7 p-2}{7 p^{5}}$
$\frac{(4 p-1)(4 p-1)}{24 p} \cdot \frac{A p}{(4 p-1)(p+2)}$
55) $\frac{\frac{c}{c^{-5}}}{\frac{y^{5}}{15 z^{5}}} \frac{\frac{p(4 p-1)}{2(p+2)}}{\text { 54) }}$
$=\frac{p(4 p-1)}{2(p+2)}$
$(z+1) 4 z$
$56)+\frac{z+4}{z-4}(z-4)=\frac{4 z(z+1)+(z+4)}{(z-4)(z+1)}$
$\frac{4 z^{2}+4 z+z^{2}-16}{(z-4)(z+1)}=\frac{5 z^{2}+4 z-16}{(z-4)(z+1)}$

$$
\begin{aligned}
& \frac{13}{8 p^{2} q} \\
& \frac{5 z^{2}+4 z-16}{(z-4)(z+1)}
\end{aligned}
$$

3bd $\frac{5}{3 b+d}-\frac{2}{3 b d}(3 b+d)$
$\left.=\frac{15 b d-6 b+2 d}{3 b d(3 b+d)} 57\right)$
56)

$$
\frac{(\omega+3)_{3}}{(57)}-\frac{2}{(w+3) w-3}-\frac{3 \omega+9-2}{w^{2}-9}=\frac{w^{2}-9}{w^{2}}
$$

$$
=\frac{3 w+7}{w^{2}-9}
$$

58)

$\frac{\frac{3 w+7}{(b-3)(w+3)}}{\frac{15 b d-6 b+2 d}{3 b d(3 b+d)}}$

Determine any value(s) of x that are undefined. \leftarrow ventioal asymptotes.
59) $f(x)=\frac{3 x-1}{3 x^{2}+5 x-2}$
60) $f(x)=\frac{x^{2}-x-12}{x^{2}-4 x}$
59) $1 / 3,-2$
$(3 x-1)(x+2)=0$
$x(x-4)=0$
60) 0,4
$x=\frac{1}{3},-2$

$$
x=0,4
$$

- ${ }^{\text {. }}$ Solve the following.

61) $\frac{3}{x+1} \neq \frac{9}{4 x+5}$

$$
\begin{gathered}
2(x-1) \\
62\left(\frac{3}{\not 2}+\frac{4}{x-1}=\frac{x+1}{x-1}\right. \\
3(x-1)+8=2 x+2 \\
3 x-3+8=2 x+2 \\
3 x+5=2 x+2 \\
x=-3
\end{gathered}
$$

$$
2(x-x)
$$

61) $x=-2$

$$
\begin{gathered}
9 x+9=12 x+15 \\
-3 x=6 \\
x=-2
\end{gathered}
$$

$$
x\left(x^{-5)}\right.
$$

63) $1-\frac{8}{x-5}=\frac{3}{x}$

$$
\begin{gathered}
x^{2}-5 x-8 x=3 x-15 \\
x^{2}-13 x=3 x-15 \\
x^{2}-16 x+15=0 \\
(x-1)(x-15)=0 \\
x=1,15
\end{gathered}
$$

65) $\frac{x+1}{x+6}+\frac{1}{x}=\frac{2 x+1}{x+6}$

$$
\begin{aligned}
& \left(x^{2}+x\right)+(x+6)=2 x^{2}+x \\
& x^{2}+2 x+6=2 x^{2}+x \\
& 0=x^{2}-x-6 \\
& 0=(x-3)(x+2)
\end{aligned}
$$

67) Find the product: $\frac{x^{2}-11 x+24}{x^{2}-18 x+80} \cdot \frac{x^{2}-15 x+50}{x^{2}-9 x+20}$

$$
\begin{aligned}
& \text { 66) } \frac{2}{x-3}+\frac{1}{x}=\frac{x-1}{x-3}>2 x+x \\
& 3 x-3=x^{2}-x \\
& 0=x^{2}-4 x+3 \\
& 0=(x-3)(x-1)
\end{aligned}
$$

$(20-3)(x+3)$
64) $\frac{6}{x-3}=\frac{8 x^{2}}{x^{2}-9}-\frac{4 x}{x+3}\left(x^{-3}\right)^{(x>\beta}$
62.) $x=-3$
$6 x+18=8 x^{2}-4 x^{2}+12 x$
$0=4 x^{2}+6 x-18$
$0=2\left(2 x^{2}+3 x-9\right)$
$0=2(2 x-3)(x+3)$
64) \qquad

$x=3 / 2, \gg$

$$
x=3 / 2
$$

66) $\frac{2}{x-3}+\frac{1}{x}=\frac{x-1}{x-3}>2 x+x-3=x^{2}-x_{65)}$ \qquad $x=3,4$
67)

$x=x(1)$
67.) \qquad $\frac{x-3}{x-4}$

$$
=\frac{x-3}{x-4}
$$

68) $\begin{aligned} \text { Solve: } & (x-1) \frac{2}{x-1}=4-\frac{x(x-1)}{x-4} \\ 2 & =4 x-4-x\end{aligned}$

$$
\begin{aligned}
& 2=3 x-4 \\
& 6=3 x \\
& x=2
\end{aligned}
$$

69) Solve: $\quad 4\left(x^{3}\right) \frac{9}{x-3}=\frac{x-4}{x-3}+\frac{1}{4} x(x-3)$

$$
5 x=55
$$

$$
x=\|
$$

68.) \qquad $x=2$
69.) \qquad

$$
x=11
$$

$$
36=4 x-16+x-3
$$

$$
9=5 x-19
$$

Chapter 12 SEQUENCES AND SERIES $S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)$
Find the sum of the series.
433
(71)
72) \qquad
73) \qquad 153
$\left[\begin{array}{l}a_{n}=a_{1}+(n-1) d \\ 75) d=7, a_{8}=54\end{array}\right.$

$$
\begin{aligned}
& \text { 74) } 8,5,2,-1,-4, \ldots \\
& a_{1}=8, d=-3 \\
& a_{n}=8+(n-1)(-3) \\
& a_{n}=8-3 n+3 \\
& a_{n}=11-3 n
\end{aligned}
$$

75) $d=7, a_{8}=54$

$$
\begin{aligned}
& a_{n}=8-3 n+3 \\
& a_{n}=11-3 n \\
& \text { Find the sum of the series. } \\
& \text { 77) } \sum_{i=1}^{15}(3+2 i) \\
& n=15 \\
& a_{t}=5 \quad a_{15}=33 \\
& S_{15}=15\left(\frac{5+33}{2}\right) \\
& =285
\end{aligned}
$$

76) \qquad $a_{n}=6 n+3$
77) $\sum_{i=1}^{22}(6 i-5)$
78) $a_{n}=11-3 n$

$$
54=a_{1}+q(7)
$$

$$
54=a_{1}+48
$$

$$
\begin{aligned}
76) a_{4}=27, & a_{11}=69 \\
27 & =a_{1}+3 d \\
a_{1} & =29=a_{1}+10 d
\end{aligned}
$$

$$
a_{1}=
$$

$$
\begin{aligned}
& a_{1}=27-18
\end{aligned}
$$

$$
42=7 d
$$

$$
\text { 75) } \frac{\theta_{n}=7 n+5}{a_{n}=7 n-2}
$$

$$
a_{n}=6+(n-1)^{7}
$$

$$
a_{1}=9
$$

$$
d=6
$$

$$
a_{n}=6+7 n-7
$$

$$
a_{n}=9+(n-1) 6
$$

$$
\text { 78) } \sum_{i=1}^{2 a_{n}=7 n t}(25-3 i)
$$

$$
a_{n}=9+6 n-6
$$

$$
n=26
$$

$$
\sum_{i=1}^{22}(6 i-5)
$$

$$
n=22
$$

$$
\begin{aligned}
& a_{1}=22 \quad a_{26} 2-53 \\
& S_{26}=26\left(\frac{22+-53}{2}\right)
\end{aligned}
$$

$$
a_{1}=1 \quad a_{22}=127
$$

$$
\begin{aligned}
& S_{26}=26\left(\frac{22+-53}{2}\right) \\
& S_{26}=-403
\end{aligned}
$$

$$
\begin{gathered}
a_{1}=1 \quad a_{22}=127 \\
=2(1+127
\end{gathered}
$$

$$
S_{22}=2\left(\frac{1+127}{2}\right)
$$

$$
=1408
$$

80) Joe buys a $\$ 600$ computer on layaway by making a $\$ 200$ down payment and then paying $\$ 25$ per month. Write a rule for the total amount of money paid on the computer after n months.

$$
\begin{aligned}
& a_{1}=200 \\
& d=25 \\
& a_{n}=200+(n-1) 25 \\
& a n=175+25 n
\end{aligned}
$$

80) \qquad

Write a rule for the nth term of the geometric sequence.

$$
a_{n} \geq a_{1} r^{n-1}
$$

81) $256,64,16,4,1, \ldots$
82) $r=5, a_{2}=200$
83) $a_{3}=16$

$$
\begin{aligned}
& \text { 83) } a_{3}=16, a_{5}=\frac{0}{9} \\
& 16=a_{1} r^{2} \quad \frac{16}{9}=a_{1} r^{4} \\
& \left(\begin{array}{ll}
a_{1}=\frac{16}{r^{2}} & \frac{160}{9}=\frac{16 r^{4}}{r^{2}} \\
2 & 186 k_{0}^{2}
\end{array}\right.
\end{aligned}
$$

81) $C_{n}=256\left(\frac{1}{4}\right)^{n-1}$

$$
\begin{aligned}
& a_{1}=256 \quad r=\frac{1}{4} \\
& a_{n}=256\left(\frac{1}{4}\right)^{n-1}
\end{aligned}
$$

$$
200=a, s^{\prime}
$$

$$
a_{n}=40(5)^{n-1}
$$

82) $Q_{n}=40(5)^{n-1}$
83) $a_{n}{ }^{2} 144\left(\frac{1}{3}\right)^{n-1}$

$$
\begin{array}{ll}
\stackrel{16}{2}=a_{1}\left(\frac{1}{3}\right)^{2} & \frac{180}{a}=\text { Her }^{2} \\
16=a_{1}(1 / 9) & \frac{1}{a}=\sqrt{r}^{2} \\
\left(a_{1}=144\right. & r=1 / 3
\end{array}
$$

$$
\begin{aligned}
& \text { 71) } \sum^{6} \text { not ithmetics } \\
& \text { 72) } \sum_{n=2}^{6}(10-4 n) \\
& \begin{array}{l}
n=2 \\
a_{1}=2
\end{array} \quad s_{3}=5\left(\frac{2+-14}{2}\right) \\
& \text { 73) } \sum_{n=1}^{17} n \\
& a_{5}=-14 s_{5}=-30 \\
& A=17 \\
& a_{1}=1 \\
& a_{17}=17 \\
& =8+11+16+23+32+43 \\
& =133 \\
& \text { Write a rule for the nth term of the arithmetic sequence. } \\
& S_{17}=17\left(\frac{1+17}{2}\right) \\
& =153
\end{aligned}
$$

\because. Find the sum of the series, if it exists. If it does not exist, write "no limit exists."

$$
\text { (84) } \begin{aligned}
& \sum_{i=1}^{9} 8(2)^{i-1} \quad \begin{array}{l}
n=9 \\
a_{1}=8 \\
r=2
\end{array} \\
& S_{q}=8\left(\frac{1-2^{9}}{1-2}\right) \\
&= 4088
\end{aligned}
$$

85) $\begin{aligned} \sum_{i=1}^{7} 40\left(\frac{1}{2}\right)^{i-1} & \begin{array}{l}n=7 \\ a_{1}\end{array}=40 \\ r & =1 / 2\end{aligned}$
86) $\sum_{i=1}^{\infty} 3\left(\frac{5}{8}\right)^{i-1} \begin{gathered}a_{r}<3 \\ r^{2} 5 / 8\end{gathered}$

$$
s_{7}=40\left(\frac{1-(1 / 2)^{7}}{1-1 / 2}\right)
$$

\qquad

$$
S=\frac{3}{1-5 / 8}=8
$$

85)

$$
=\frac{635}{8}
$$

86) \qquad
87) $\sum_{i=1}^{\infty} 7\left(-\frac{3}{4}\right)^{i-1} \quad \begin{aligned} & a_{1}=7 \\ & r=-3 / 4\end{aligned}$
88) $\sum_{i=1}^{\infty} 4(1.25)^{i-1}$
89) $\sum_{i=1}^{\infty} \frac{2}{3}(-3)^{i-1}$
90) \qquad
91) No sum
92) \qquad No som
93) $4,13,22,31,40$
$91) 8,40,200,2000$,
5000
94) $2,4,12,28,240$
95) $a_{1}=4, a_{2}=7, a_{n}=a_{n-1}+a_{n-2}$
$a_{3}=7+4=11$
$a_{4}=11+7=18$
$a_{55}=18+11=29$
$93) 4,7, n, 18,29$
96) $a_{1}=2, a_{n}=6 \cdot a_{n-1}$
97) $a_{1}=3, a_{n}=a_{n-1}+7$

Find the first three iterates of the function for the given initial value.
96)

$$
\begin{aligned}
& f(x)=3 x-7, x_{0}=4 \\
& f(4)=12-7=5 \\
& f(5)=15-7=8
\end{aligned}
$$

$$
\text { 97) } f(x)=8-5 x, x_{0}=1
$$

96)

$$
f(1)=8-5=3
$$

\qquad $5,8,17$

$$
f(3)=8-15=-7
$$

97) $3,-7,43$

Chapter 10 COUNTING METHODS AND PROBABILITY
98) A briefcase lock has 3 rotating cylinders each containing 10 digits.
98) \qquad 1000 How many numerical codes are possible?

$$
10^{3}
$$

99) Alan is playing the role of Oliver in his school's production of Oliver Twist. The wardrobe crew has presented Allan with 5 pairs of pants and 4 shirts that he can wear. How many possible costumes consisting of a pair of pants and a shirt does Allan have to choose from?

$$
{ }_{5} C_{1} \cdot{ }_{4} C_{1}=5.4
$$

100) A Mexican restaurant offers chicken, beef, or vegetarian fajitas wrapped with either corn or flour tortillas, and topped with either mild, medium or hot salsa. How many different choices of fajitas does a customer have?

$$
3 \cdot 2 \cdot 3
$$

101) How many 7-digit phone numbers can be formed if the first digit cannot

\qquad
102) \qquad
103) \qquad 483,840 be 0 or 1 , and no digit can be repeated?

$$
898 \geq 6 \leq 1
$$

Determine whether each situation involves a permutation of combination. Then find the number of possibilities.
102) Seating 8 students in 8 seats in the front row of the school auditorium.
103) Checking out 3 library books from a list of 8 books for a research paper.

$$
{ }_{8} C_{3}
$$

104) Electing 4 candidates to a municipal planning board from a field of 7 candidates.

$$
{ }_{7} C_{4}
$$

105) The first, second and third place finishers in a race with 10 contestants.

106) 56
107) 35
108) \qquad 720

$$
10 \rho_{3}
$$

Evaluate.
106) ${ }_{5} P_{3}$
107) ${ }_{6} C_{2}$
108) 6!
109) $\frac{10!}{5!5!}$
106) $\frac{60}{15}$
107) $\frac{1720}{252}$
110) Find the number of distinguishable permutations in the following word:
a) PANAMA
b)

*. 111) Find the number of possible 5-card hands that contain the cards specified. The cards are taken from a standard 52-card deck.
a) 4 kings and one other card ${ }_{4} C_{4} \cdot{ }_{48} C_{1}$
b) 5 hearts or 5 diamonds

$$
{ }_{13} C_{5}+{ }_{13} C_{5}
$$

\qquad
111b) 2574
(3)

Six representatives from a senior class of 350 students are to be chosen for the student council. In how many ways can these students be chosen to represent the senior class on the student council?
113) \qquad
350 C 6
114) You have an equally likely chance of choosing any integer from 1 through 30 . Find the probability of the given event.
a) An even number is chosen

$$
\frac{15}{30}
$$

c) A factor of 60 is chosen $1,2,3,4,5,6,10,12,15,20,30$, $\frac{11}{36}$
b) A multiple of 5 is chosen

$$
\frac{6}{30}=\frac{1}{5}
$$

d)

114a) \qquad
114b) $\quad 1 / 5$

115) Let A and B be events such that $P(A)=\frac{2}{3}, P(B)=\frac{1}{2}$ and $P($ A and $B)=\frac{1}{3}$. Find $P($ for $B)=P(A)+P(B)-P(A$ on $B)$
115) \qquad
$=\frac{2}{3}+\frac{1}{2}-\frac{1}{3}$
$=\frac{4}{6}+\frac{3}{6}-\frac{2}{6}=\frac{5}{6}$
116) Let A and B be events such that $P(A)=0.32, P(B)=0.48$, and $P(A$ and $B)=0.12$. Find the indicated probability.
a) $\quad \mathrm{P}(\mathrm{A}$ or B$)$
b) $\quad P(\bar{A})$
c) $\quad P(\bar{B})$

116a). 68

$$
\begin{array}{rll}
.32+.48-.12 & 1-.32 & 1-.48 \\
=.8-.12 & =.68 & =.52 \\
=.68 & &
\end{array}
$$

$$
116 \mathrm{~b}) .68
$$

$$
\text { 161c) } .52
$$

117) A card is randomly selected from a standard deck of 52 cards. Find the probability of drawing the given card.
a) a red king
b) a diamond
c) not a club

$$
\frac{2}{52}=\frac{1}{26}
$$

or a 3

$$
\frac{39}{52}=\frac{3}{4}
$$

pred and king) $=4 / 13$
117a) $\frac{1 / 26}{117 b) \frac{4 / 13}{3 / 4}}$

$$
=P\left(r_{26 / 52}+P\left(k_{4 / 52} \text { ing }\right)-P\left(r_{2 \%)_{52}}\right)_{k i} \text { ar }\right)
$$

$118)^{2 / 82}$ Two six-sided dice are rolled. Find the probability of the given event.
a) The sum is not 7
b) The sum is less than 8 or greater than 11

$$
\begin{aligned}
& =1-\frac{6}{36} \\
& =30 / 36=5 / 4
\end{aligned}
$$

Find the odds in favor of an event, given the probability of the event.
119) $\frac{3}{7}$
120) $\frac{4}{5}$
121) $\frac{1}{15}$
119) \qquad
120) $4: 1$
121) $1: 84$
122) $\frac{10}{11}$
123) \qquad
124)

b) $P(4$, then not 6$)=\frac{1}{6} \cdot \frac{5}{6} \pm \frac{5}{36}$

b)

126) There are 3 nickels, 3 dimes and 5 quarters in a purse. Three coins are selected in succession at random. Find the probability.
a) P (nickel, then dime, then quarter) if no replacement occurs.

$$
\frac{3^{C_{1}}}{{ }_{11}^{C_{1}}} \cdot \frac{3^{C_{1}}}{{ }_{10} C_{1}} \cdot \frac{{ }_{5} C_{1}}{{ }_{9} C_{1}}=\frac{3 \cdot 3.5}{11 \cdot 10.9}=\frac{45}{990}=\frac{1}{22}
$$

b) $\mathrm{P}(3$ dimes $)$ if replacement occurs.

$$
\frac{{ }_{3} C_{1}}{11 C_{1}} \cdot \frac{{ }_{3} C_{1}}{11 C_{1}} \cdot \frac{{ }_{3} C_{1}}{11 C_{1}}=\frac{3^{3}}{11^{3}}=\frac{27}{1331}
$$

c) $P($ nickel, then 2 quarters) if replacement occurs.

$$
\frac{3^{C_{1}}}{{ }_{11} C_{1}} \cdot \frac{5 C_{1}}{{ }_{11} C_{1}} \cdot \frac{5 C_{1}}{{ }_{11} C_{1}}=\frac{3.5 .5}{11^{3}}=\frac{75}{1331}
$$

d) $\mathrm{P}(3$ quarters $)$ if no replacement occurs.

$$
\frac{5 c_{1}}{{ }_{11}^{c_{1}}} \cdot \frac{4^{c_{1}}}{10^{c_{1}}} \cdot \frac{{ }_{3}^{c_{1}}}{{ }_{9} c_{1}}=\frac{5 \cdot 4 \cdot 3}{11 \cdot 10 \cdot 9}=\frac{60}{990}=\frac{2}{33}
$$

127) Serena is creating a painting. She wants to use 2 more colors. She chooses randomly from 6 shades of red, 10 shades of green, 4 shades of yellow, 4 shades of purple and 6 shades of blue. What is the probability that she chooses 2 shades of green?

$$
\frac{10^{c_{2}}}{30^{c_{2}}}=\frac{45}{435}=\frac{3}{29}
$$

128) Becky's mother is shopping at the bakery. The owner offers Becky a cookie from a jar containing 22 chocolate chip cookies, 18 sugar cookies and 15 oatmeal cookies. Without looking, Becky selects one, drops it back in, and then randomly selects another. What is the probability that neither selection was a chocolate chip cookie?

$$
\frac{33 C_{1}}{{ }_{55} C_{1}} \cdot \frac{{ }_{33} C_{1}}{55 C_{1}}=\frac{1089}{3025}=\frac{9}{25}
$$

127) \qquad
d) $2 / 33$

127

c) $\quad 1331$

$$
27 / 1331
$$

b) \qquad

75
\qquad
128) $\quad 9 / 25$
\qquad in, and then randomly selects another. What is the probability that neither

129) A die is rolled. Find each probability.
a) $P(5$ or 6$)$

$$
\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}
$$

b) P (at least a 3)

$$
\frac{4}{6}=\frac{2}{3}
$$

129 a) \qquad
b)

$$
2 / 3
$$

Chapter 9 Conics
Graph the following equations.
130. $(x+5)^{2}+(y-2)^{2}=16$

132. $x=3(y+1)^{2}-3 \quad(x+3)=3(y+1)^{2}$
$\frac{1}{3}(x+3)=(y+1)$

$$
\frac{1}{3}=4 p
$$

$$
p=\frac{1}{12}
$$

134. $\frac{(x-1)^{2}}{4}-\frac{(y+2)^{2}}{9}=1$

135. $(y+1)^{2}-\frac{(x-2)^{2}}{9}=1$

136. $\frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$

$$
\begin{aligned}
& c^{2}=a^{2}-b^{2} \\
& c^{2}=9-4 \\
& c^{2}=5 \\
& c=\sqrt{5}
\end{aligned}
$$

135. $y=(x-2)^{2}+1 \quad(x-2)^{2}=y-1$

Write an equation given the following information.Circle Center $(-2,4)$ and a point on the circle $(-7,5)$
136. $(x+2)^{2}+\left(y y^{2}\right)^{2}=26$

$$
\begin{gathered}
(x+2)^{2}+(y-4)^{2}=r^{2} \\
25+1=r^{2} \\
r^{2}=2 c
\end{gathered}
$$

137. Parabola Vertex at $(-3,-4)$ Focus $(-3,33 / 4)$

$$
p=\frac{31}{4}
$$

137. $(x+3)^{2}=31(y+2)$

$$
\begin{aligned}
& (x+3)^{2}=4 p(y+4) \\
& (x+3)^{2}=31(y+4)
\end{aligned}
$$

138. Parabola Vertex at $(1,3)$ directrix $x=7 / 8$

$$
\begin{aligned}
& (y-3)^{2}=4 p(x-1) \quad p=\frac{1}{8} \\
& (y-3)^{2}=\frac{1}{2}(x-1)
\end{aligned}
$$

139. Ellipse Vertices $(4,2)(4,-8)$ Co-vertices $(1,-3)(7,-3)$ Center $(4,-3)$

$$
\frac{(x-4)^{2}}{9}+\frac{(y+3)^{2}}{25}=1
$$

140. Hyperbola Vertices $(-4,3)(-4,7)$ Foci $(-4,1)(-4,9)$ center $(-4,5)$

$$
\begin{aligned}
& a= 2, a^{2}=4 \\
& c=4, c^{2}=16 \\
& c^{2}=a^{2}+b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 140 . \\
& 16=4+b{ }^{4}=\frac{(y-5)^{2}}{4}-\frac{\left(x+\frac{2}{4}\right)}{12} \\
& b^{2}=12
\end{aligned}
$$

Identify the vertices, foci, co-vertices, and directrix from the graph - if they exist.
141.

$$
\begin{aligned}
(y+2)^{2} & =\frac{1}{2}(x+3) \\
4 & =\frac{1}{2} \\
p & =\frac{1}{8}
\end{aligned}
$$

142. $\frac{(y+5)^{2}}{3}-\frac{(x+4)^{2}}{9}=1$

$$
\text { center }(-4,-5)
$$

$$
a=\sqrt{3} \quad b=3
$$

$$
\begin{gathered}
c^{2}=3+9=12 \\
c=\sqrt{12}=2 \sqrt{3} \\
V=(-4,-5 \pm \sqrt{3}) \\
F:(-4,-5 \pm 2 \sqrt{3})
\end{gathered}
$$

$$
\begin{aligned}
& \text { 141. } V \frac{(-3,-2)}{F\left(\frac{23}{8},-2\right)} \\
& \text { CV }=-\frac{-25}{8}
\end{aligned}
$$

\qquad
F \qquad
CV \qquad
d \qquad
143. $\frac{(x-4)^{2}}{36}+\frac{(y+2)^{2}}{7}=1$
144. $(x+4)^{2}+(y-2)^{2}=25$
143. V \qquad
center $(4,-2)$

$$
\begin{aligned}
& V=(-2,-2)(10,-2) \\
& C V:(4,-2 \pm \sqrt{7}) \\
& F=(4 \pm \sqrt{29},-2) \\
& C^{2}=36-7 \\
& C^{2}=29 \quad C=\sqrt{29}
\end{aligned}
$$

$$
\text { Center }(-4,2)
$$

$$
r=5
$$

Without graphing, identify the conic from the equation.
145. $\frac{(x+1)^{2}}{16}-\frac{(y-2)^{2}}{7}=1$
146. $x=(y-2)^{2}+3$
145. hyperbola
146. parabok
147. $\frac{(x-3)^{2}}{5}+(y+2)^{2}=1$
148. $(x-2)^{2}+(y+3)^{2}=25$
147. ellipse
148. circle

$$
\frac{(x-3)^{2}}{5}+\frac{5(y+2)^{2}}{5}=\frac{5}{5}
$$

